GENERALIZED NONINTERPOLATORY RULES FOR CAUCHY PRINCIPAL VALUE INTEGRALS

PHILIP RABINOWITZ

ABSTRACT. Consider the Cauchy principal value integral

$$I(kf;\lambda) = \int_{-1}^{1} k(x) \frac{f(x)}{x-\lambda} dx, \quad -1 < \lambda < 1.$$

If we approximate f(x) by $\sum_{j=0}^{N} a_j p_j(x; w)$ where $\{p_j\}$ is a sequence of orthonormal polynomials with respect to an admissible weight function w and $a_j = (f, p_j)$, then an approximation to $I(kf; \lambda)$ is given by $\sum_{j=0}^{N} a_j I(kp_j; \lambda)$. If, in turn, we approximate a_j by $a_{jm} = \sum_{i=1}^{m} w_{im} f(x_{im}) p_j(x_{im})$, then we get a double sequence of approximations $\{Q_m^N(f; \lambda)\}$ to $I(kf; \lambda)$. We study the convergence of this sequence by relating it to the sequence of approximations associated with $I(wf; \lambda)$ which has been investigated previously.

1. INTRODUCTION

In a recent paper, Rabinowitz and Lubinsky [9] studied the convergence properties of a method proposed by Rabinowitz [7] and Henrici [3] for the numerical evaluation of Cauchy principal value (CPV) integrals of the form

(1)
$$I(wf;\lambda) = \int_{-1}^{1} w(x) \frac{f(x)}{x-\lambda} dx, \qquad -1 < \lambda < 1,$$

where $w \in A$, the set of all admissible weight functions, i.e., all functions w on J = [-1, 1] such that $w \ge 0$ and $||w||_1 > 0$. This method is based on approximating $I(wf; \lambda)$ by

(2)
$$\hat{S}_N(f;\lambda) = \sum_{j=0}^N a_j q_j(\lambda),$$

where

(3) $a_{j} = (f, p_{j}),$

Received July 18, 1988; revised January 5, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 65D30; Secondary 65D32, 41A55.

Key words and phrases. Cauchy principal value integrals, numerical integration, noninterpolatory integration rules, orthogonal polynomials.

©1990 American Mathematical Society 0025-5718/90 \$1.00 + \$.25 per page $q_j(\lambda) = I(wp_j; \lambda)$ and $\{p_j(x; w): j = 0, 1, 2, ...\}$ is the family of orthonormal polynomials with respect to w. In turn, $\hat{S}_N(f; \lambda)$ is approximated by

(4)
$$\hat{Q}_m^N(f;\lambda) = \sum_{j=0}^N a_{jm} q_j(\lambda),$$

where $a_{jm} = Q_m(fp_j)$ is an approximation to a_j based on the numerical integration rule

(5)
$$Q_m(g) = \sum_{i=1}^m w_{im} g(x_{im}),$$

and where we assume that

(6)
$$\lim_{m \to \infty} Q_m(g) = \int_{-1}^1 w(x)g(x) \, dx$$

for all $g \in C(J)$ or all $g \in R(J)$, the set of all Riemann-integrable functions on J.

Now, this method requires knowledge of the three-term recurrence relation for the polynomials p_j which is not always available. Furthermore, it is not always easy to find squences of integration rules $Q_m(g)$ which satisfy (6), especially if w is a nonstandard weight or if we do not wish to use Gaussian rules but rather rules which concentrate many integration points in subintervals where f is not well behaved. Finally, the restriction to admissible weight functions does not allow us to deal with CPV integrals of the form

(7)
$$I(kf;\lambda) = \int_{-1}^{1} k(x) \frac{f(x)}{x-\lambda} dx, \qquad -1 < \lambda < 1,$$

where k is such that $I(kf; \lambda)$ exists but k need not be nonnegative. Since the main idea in writing the numerator of the integrand in (7) as the product of two functions, k and f, is to incorporate the singular or difficult part of the numerator into k and treat it analytically while treating the smooth factor f numerically, it would make no sense to rewrite (7) as $I(wF; \lambda)$ with $F = w^{-1}kf$ unless w had the same singularity structure as k, and even then we would usually have the problems mentioned above.

In this paper, we shall try to overcome these shortcomings in [9] by using ideas of noninterpolatory product integration [8] combined with a device found in [1] for expressing CPV integrals with respect to one function, say k, in terms of CPV integrals with respect to a second function, say w, positive in (-1, 1). The point is that we can then choose a convenient weight function w for expressing our inner products and for evaluating the approximations to these inner products, for example $w(x) \equiv 1$ or $w(x) = (1 - x^2)^{-1/2}$. In fact, this latter weight function is particularly useful, as we shall see. We shall first describe the method in §2 and then study some convergence questions in §3.

2. A GENERALIZED NONINTERPOLATORY RULE

Consider the CPV integral $I(kf; \lambda)$ given by (7) where $k \in DT(N_{\delta}(\lambda)) \cap L_1(J)$ and $f \in DT(N_{\delta}(\lambda)) \cap R(J)$, which ensures that $I(kf; \lambda)$ exists. Here $N_{\delta}(\lambda) = [\lambda - \delta, \lambda + \delta] \subset (-1, 1)$

272

and, for any interval I of length l(I),

$$DT(I) = \left\{ g: \int_0^{l(I)} \omega_I(g; t) t^{-1} dt < \infty \right\}$$

where the modulus of continuity of g on I is given by

$$\omega_I(g; t) = \sup_{\substack{|x_1 - x_2| \le t \\ x_1, x_2 \in I}} |g(x_1) - g(x_2)|.$$

Assume now that we have a convenient weight function $w \in DT(N_{\delta}(\lambda)) \cap A$ such that $w(\lambda) > 0$. We then have a three-term recurrence relation for the sequence of orthonormal polynomials $\{p_i(x; w)\}$ of the form

(8)
$$p_{-1} = 0$$
, $p_0 = 1$, $p_{j+1}(x) = (A_j x - \alpha_j) p_j(x) - \beta_j p_{j-1}(x)$, $j \ge 0$.

If we expand f in an orthogonal series in terms of the $p_i(x; w)$, which for the moment, we assume converges uniformly in J,

(9)
$$f(x) = \sum_{j=0}^{\infty} a_j p_j(x; w),$$

then we can approximate f(x) by $\sum_{j=0}^{N} a_j p_j(x; w)$ and $I(kf; \lambda)$ by

(10)
$$S_N(f;\lambda) = \sum_{j=0}^N a_j M_j(k;\lambda),$$

where $M_{i}(k; \lambda) = I(kp_{i}; \lambda)$. In turn, we then approximate $S_{N}(f; \lambda)$ by

(11)
$$Q_m^N(f;\lambda) = \sum_{j=0}^N a_{jm} M_j(k;\lambda).$$

The $M_{i}(k; \lambda)$ satisfy the following nonhomogeneous recurrence relation

(12)
$$M_{j+1}(k;\lambda) = (A_j\lambda - \alpha_j)M_j(k;\lambda) - \beta_j M_{j-1}(k;\lambda) + A_j N_j(k),$$

where

$$N_{j}(k) = \int_{-1}^{1} k(x) p_{j}(x; w) \, dx \, .$$

Relation (12) follows by replacing p_{j+1} in $I(kp_{j+1}; \lambda)$ by the right-hand side of (8) and using the well-known device

$$\int_{-1}^{1} k(x) \frac{x p_j(x)}{x - \lambda} \, dx = \int_{-1}^{1} k(x) \frac{(x - \lambda) p_j(x)}{x - \lambda} \, dx + \lambda \int_{-1}^{1} k(x) \frac{p_j(x)}{x - \lambda} \, dx.$$

Hence, if we know the $N_{i}(k)$, we can evaluate (11) in a stable manner by

backward recurrence. If $w(x) = (1 - x^2)^{-1/2}$, so that (except for normalization) $p_j = T_j$, the Chebyshev polynomial of the first kind, then recurrence relations for $N_i(\vec{k})$ are known for a wide variety of functions [6]. For $w(x) \equiv 1$, for which $p_j = P_j$, the

PHILIP RABINOWITZ

Legendre polynomial, recurrence relations for $N_j(k)$ for $k(x) = e^{i\tau x}$, $|x - \tau|^{\alpha}$ and $\log |x - \tau|$ are given by Paget [5], and for a variety of functions by Gatteschi [2]. Since the work of Paget is not readily available, we give his recurrence relations in Appendix 1. In Appendix 2, we give the recurrence relations for evaluating $Q_m^N(f; \lambda)$ when the $N_j(k)$ are known, as well as for evaluating the weights $w_{im}^N(\lambda)$ in the Lagrangian formulation of $Q_m^N(f; \lambda)$, namely

(13)
$$Q_m^N(f;\lambda) = \sum_{i=1}^m w_{im}^N(\lambda) f(x_{im})$$

with

(14)
$$w_{im}^{N}(\lambda) = w_{im} \sum_{j=0}^{N} p_{j}(x_{im}) M_{j}(k; \lambda).$$

3. Convergence results

We study first the convergence of $S_N(f; \lambda)$ to $I(kf; \lambda)$, for then we can proceed as in [9] to study the convergence of $Q_m^N(f; \lambda)$ to $I(kf; \lambda)$, either as an iterated limit or as a double limit. Since we have results in [9] for the convergence of $\hat{S}_N(f; \lambda)$ to $I(wf; \lambda)$, we shall try to reduce the study of the convergence of $S_N(f; \lambda)$ to that of the convergence of $\hat{S}_N(f; \lambda)$. To this end, we use a device in [1] to relate a CPV integral weighted by k to one weighted by w. This is done by writing

$$\begin{split} I(kf;\lambda) &= \int_{-1}^{1} k(x) \frac{f(x)}{x-\lambda} dx = \int_{-1}^{1} w(x) \frac{k(x)}{w(x)} \frac{f(x)}{x-\lambda} dx \\ &= \int_{-1}^{1} w(x) \frac{f(x)}{x-\lambda} \left[\frac{k(x)}{w(x)} - \frac{k(\lambda)}{w(\lambda)} \right] dx + \frac{k(\lambda)}{w(\lambda)} \int_{-1}^{1} w(x) \frac{f(x)}{x-\lambda} dx \\ &= \int_{-1}^{1} f(x) k[x,\lambda] dx - \frac{k(\lambda)}{w(\lambda)} \int_{-1}^{1} f(x) w[x,\lambda] dx + \frac{k(\lambda)}{w(\lambda)} I(wf;\lambda) \,. \end{split}$$

Here, we have used the divided difference notation,

$$h[x, y] = \frac{h(x) - h(y)}{x - y}$$

Consequently, if we have conditions on f and w which ensure convergence of $\hat{S}_N(f; \lambda)$ to $I(wf; \lambda)$, we need only find the additional conditions on f, k and w to insure the convergence of

$$\sum_{j=0}^{N} a_j \int_{-1}^{1} p_j(x) w[x, \lambda] dx \quad \text{to} \quad \int_{-1}^{1} f(x) w[x, \lambda] dx \equiv I_1$$

and

$$\sum_{2} \equiv \sum_{j=0}^{N} a_{j} \int_{-1}^{1} p_{j}(x) k[x, \lambda] dx \text{ to } \int_{-1}^{1} f(x) k[x, \lambda] dx \equiv I_{2},$$

for then

$$\begin{split} S_N(f;\lambda) &= \sum_{j=0}^N a_j M_j(k;\lambda) = \frac{k(\lambda)}{w(\lambda)} \sum_{j=0}^N a_j q_j(\lambda) - \frac{k(\lambda)}{w(\lambda)} \sum_{1} + \sum_{j=0}^N a_j q_j(\lambda) - \frac{k(\lambda)}{w(\lambda)} \sum_{1} \frac{k(\lambda)}{w(\lambda)} I(wf;\lambda) - \frac{k(\lambda)}{w(\lambda)} I_1 + I_2 = I(kf;\lambda) \,. \end{split}$$

Clearly, sufficient conditions for the convergence of \sum_1 and \sum_2 are that (9) holds uniformly in J and that w and $k \in DT(J)$, for then

(15)
$$\left| I_1 - \sum_{1} \right| \le 2 \| r_N \|_{\infty} \int_0^2 \omega_J(w; t) t^{-1} dt,$$

where $r_N(x) = \sum_{j=N+1}^{\infty} a_j p_j(x; w)$, and similarly for $|I_2 - \sum_2|$. Hence, provided $|k(\lambda)| < \infty$ and $w(\lambda) > 0$, we have convergence of $S_N(f; \lambda)$ whenever $\hat{S}_N(f; \lambda)$ converges. Furthermore, if $\hat{S}_N(f; \lambda)$ converges uniformly with respect to λ on some closed subset Δ of (-1, 1) and $w(\lambda) > 0$ and $|k(\lambda)| < \infty$ on Δ , then we will have uniform convergence of $S_N(f; \lambda)$ on Δ . However, we can weaken these conditions in various directions. Thus, it is not necessary that w and $k \in DT(J)$, only that $w, k \in DT(N_{\delta}(\lambda)) \cap L_1(J)$. For then, we can replace (15) by

(16)
$$\begin{aligned} \left| I_{1} - \sum_{1} \right| &= \left| \int_{-1}^{1} r_{N}(x) w[x, \lambda] dx \right| \\ &\leq \left\| r_{N} \right\|_{\infty} \left[\int_{N_{\delta}(\lambda)} \left| w[x, \lambda] \right| dx + \int_{J - N_{\delta}(\lambda)} \left| w[x, \lambda] \right| dx \right], \end{aligned}$$

where both integrals are finite, and similarly for \sum_2 . The first integral in (16) is finite since

$$\int_{N_{\delta}(\lambda)} |w[x, \lambda]| \, dx = \int_{\lambda-\delta}^{\lambda+\delta} \left| \frac{w(x) - w(\lambda)}{x - \lambda} \right| \, dx$$
$$= \int_{-\delta}^{\delta} \left| \frac{w(t+\lambda) - w(\lambda)}{t} \right| \, dt \le 2 \int_{0}^{\delta} \omega_{N_{\delta}(\lambda)}(w; t) t^{-1} \, dt$$

while, for the second integral, we have

$$\begin{split} \int_{J-N_{\delta}(\lambda)} |w[x,\lambda]| \, dx &= \int_{J-N_{\delta}(\lambda)} \left| \frac{w(x) - w(\lambda)}{x - \lambda} \right| \, dx \\ &\leq \delta^{-1} \int_{J-N_{\delta}(\lambda)} |w(x) - w(\lambda)| \, dx \\ &< \delta^{-1} [\|w\|_{1} + 2w(\lambda)] < \infty \,. \end{split}$$

Another possibility is to require only that (9) holds uniformly in $N_{\delta}(\lambda)$. Then, if both $w^{-1} \in L_1(J)$ and $k^2/w \in L_1(J)$, a well-known condition in product integration theory [10], we have convergence of $S_N(f; \lambda)$. We summarize these remarks in a theorem and several corollaries.

Theorem 1. Assume that for some $\lambda \in (-1, 1)$,

(17)
$$\int_{-1}^{1} r_N(x) w[x, \lambda] dx \to 0, \qquad \int_{-1}^{1} r_N(x) k[x, \lambda] dx \to 0 \quad \text{as } N \to \infty,$$

that $w(\lambda) > 0$ and that $|k(\lambda)| < \infty$. Then

(18)
$$S_N(f;\lambda) \to I(kf;\lambda)$$

if and only if

(19)
$$\hat{S}_N(f;\lambda) \to I(wf;\lambda).$$

Let Δ be a closed subset of (-1, 1) and assume that (17) holds uniformly in Δ , and that $w(\lambda) > 0$ and $|k(\lambda)| < \infty$ for all $\lambda \in \Delta$; then (18) holds uniformly in Δ if and only if (19) holds uniformly in Δ .

Corollary 1. If for some $\lambda \in (-1, 1)$, $\sup_{j} |q_{j}(\lambda)| < \infty$, $\sup_{j} ||p_{j}(\cdot; w)||_{\infty} < \infty$, $w(\lambda) > 0$, w, $k \in DT(N_{\delta}(\lambda)) \cap L_{1}(J)$, $f \in L_{1,w}(J)$ and $f[x, \lambda] \in L_{1,w}(J)$, then (18) holds.

Proof. By Theorem 2 in [9], the hypotheses of the corollary suffice for (19) to hold. By Theorem 4 in [4, p. 70], $||r_N||_{\infty} \to 0$. Hence, as in (16),

$$\left| \int_{-1}^{1} r_{N}(x) w[x, \lambda] dx \right|$$

$$\leq ||r_{N}||_{\infty} \left[\int_{N_{\delta}(\lambda)} |w[x, \lambda]| dx + \int_{J-N_{\delta}(\lambda)} |w[x, \lambda]| dx \right] \to 0,$$

and similarly for $\int_{-1}^{1} r_N(x)k[x, \lambda] dx$. Furthermore, since $k \in DT(N_{\delta}(\lambda))$, one has $|k(\lambda)| < \infty$. Hence, by Theorem 1, (18) holds. \Box

Before stating the next corollary, we recall the definition of a generalized smooth Jacobi (GSJ) weight function [1]. We say that $w \in GSJ$ if

(20)
$$w(x) = \psi(x) \prod_{j=0}^{p+1} |x - t_j|^{\gamma_j}, \qquad \gamma_j > -1, \ j = 0, \dots, p+1,$$

where $-1 = t_0 < t_1 < \cdots < t_p < t_{p+1} = 1$, $p \ge 0$ and $\psi > 0$, $\psi \in DT(J)$. Corresponding to such a w, we define the set D = J - T, where $T = \{t_0, t_1, \ldots, t_{p+1}\}$.

Corollary 2. Assume that $f \in DT(J)$, $w \in GSJ$ and $k \in DT(\Delta) \cap L_1(J)$, where Δ is any compact subset of D. If (9) holds uniformly in J, then (18) holds uniformly in Δ .

Proof. By Theorem 3 in [9], (19) holds uniformly in Δ . \Box

Corollary 3. Assume that $f \in DT(J)$ and $w(x) = (1 - x^2)^{-1/2}$, or that $f \in H_{1/2+\varepsilon}(J)$ and $w(x) \equiv 1$, where $H_{\mu}(J) = \{g : \omega_J(g; t) < At^{\mu}, 0 < \mu \leq 1, A > 0\}$. If $k \in DT(\Delta) \cap L_1(J)$, where Δ is any compact subset of (-1, 1), then (18) holds uniformly in Δ .

Proof. Under the above hypotheses, (9) holds uniformly in J. \Box

Corollary 4. Assume that $f \in DT(J)$, $w \in GSJ$, $w^{-1} \in L_1(J)$, $k^2w^{-1} \in L_1(J)$ and $k \in DT(\tilde{\Delta}) \cap L_1(J)$ for every compact subset $\tilde{\Delta}$ of D. Then (18) holds uniformly in any compact subset of Δ of D.

Proof. Let *h* be the distance of Δ from *T*. Then we can find a compact set $\tilde{\Delta}$ such that $\Delta \subset \tilde{\Delta} \subset D$ and the distance of Δ from $J - \tilde{\Delta}$ is h/2. Since by Theorem 3 in [9], (19) holds uniformly in Δ , we must show (16). Now, by Theorem 2 in [4, p. 95] and by the properties of $p_n(x; w)$, we have $r_N(x) \to 0$ uniformly in $\tilde{\Delta}$. Since $w \in DT(\tilde{\Delta})$,

$$\left|\int_{\hat{\Delta}} r_N(x)w[x,\lambda]\,dx\right| \leq \|r_N\|_{\hat{\Delta}}\int_{\hat{\Delta}} |w[x,\lambda]|\,dx \to 0\,.$$

Furthermore,

(21)
$$\left| \int_{J-\tilde{\Delta}} r_N(x) w[x,\lambda] dx \right| \\ \leq \left(\int_{J-\tilde{\Delta}} w(x) r_N^2(x) dx \right)^{1/2} \left(\int_{J-\tilde{\Delta}} \frac{w^2[x,\lambda]}{w(x)} dx \right)^{1/2}$$

Since $f \in L_{2,w}$, the first integral in the right-hand side tends to 0. As for the second integral, we have that

$$\int_{J-\tilde{\Delta}} \frac{(w(x) - w(\lambda))^2}{w(x)(x - \lambda)^2} dx \le \frac{4}{h^2} \int_{-1}^{1} (w(x) - 2w(\lambda) + w(\lambda)w(x)^{-1}) dx < \infty.$$

Similarly, since $k \in DT(\tilde{\Delta})$, one has $\int_{\tilde{\Lambda}} r_N(x) k[x, \lambda] dx \to 0$.

As for $\int_{J-\tilde{\Delta}} r_N(x)k[x, \lambda] dx$, we use an inequality analogous to (21) and the fact that

$$\int_{J-\hat{\Delta}} \frac{k^2[x,\lambda]}{w(x)} \, dx \leq \frac{4}{h^2} \int_{-1}^1 \frac{k^2(x) - 2k(x)k(\lambda) + k(\lambda) \, dx}{w(x)} < \infty \,,$$

since $kw^{-1} = (kw^{-1/2})w^{-1/2} \in L_1(J)$ by the Cauchy-Schwarz inequality. \Box

As particular cases of Corollary 4, we note that if $w(x) = (1 - x^2)^{-1/2}$, we only require of k that $|k(x)| \leq C(1 - x^2)^{-3/4+\varepsilon}$, while if $w(x) \equiv 1$, we require that $|k(x)| \leq C(1 - x^2)^{-1/2+\varepsilon}$. As in Corollary 3, this again shows the superiority of the Chebyshev weight.

Once we have shown that (18) holds, we can proceed to the study of the convergence of $Q_m^N(f; \lambda)$. We shall state here three theorems corresponding to Theorems 6-8 in [9]. We do not give any proofs, since they are almost identical to the proofs in [9].

Theorem 2. Assume that $f \in R(J)$, that $I(kf; \lambda)$ exists and that $w \in A$, $k \in L_1(J)$ and $\lambda \in (-1, 1)$ are such that (18) holds. Let $\{Q_m(g)\}$ be a sequence of integration rules such that (6) holds for all $g \in R(J)$. Then

(22)
$$\lim_{N \to \infty} \lim_{m \to \infty} Q_m^N(f; \lambda) = I(kf; \lambda).$$

Theorem 3. Suppose that for m = 1, 2, ..., the rule $Q_m(g)$ has precision $\pi_m > N_m$, that $\mu_m \equiv \min(N_m, \pi_m - N_m) \to \infty$ as $m \to \infty$ and that

$$\sum_{i=1}^{m} |w_{im}^{N_m}(\lambda)| \le C \log \mu_m, \qquad m = 1, 2, \dots.$$

Assume that $f \in C(J)$ satisfies the Dini-Lipschitz condition

$$\lim_{t \to 0} \omega_J(f; t) \log t = 0,$$

that $I(kf; \lambda)$ exists, that $M_0(k; \lambda)$ is finite and that |k| is bounded in $N_{\delta}(\lambda)$ for some $\delta > 0$. Then

(23)
$$\lim_{m \to \infty} Q_m^{N_m}(f; \lambda) = I(kf; \lambda).$$

Theorem 4. Assume that (6) holds for all $g \in R(J)$, that $I(kf; \lambda)$ exists and that (18) holds. Then, given a sequence $\{(m, N_m)\}$ of pairs of positive integers with $N_m \to \infty$ as $m \to \infty$, we have that (23) holds if and only if for every $\varepsilon > 0$, we can find a positive integer l such that for all m sufficiently large,

$$\left|\sum_{j=l}^{N_m} \mathcal{Q}_m(fp_j) \mathcal{M}_j(k\,;\,\lambda)\right| < \varepsilon\,.$$

Appendix 1

In this appendix we give the backward recurrence formulae of Paget [5] for the evaluation of $S = \sum_{i=0}^{N} c_i N_i(k)$ for the case $w(x) \equiv 1$, i.e.,

$$N_{j}(k) = \int_{-1}^{1} k(x) P_{n}(x) \, dx \, ,$$

and for three classes of functions k. In each case we construct the sequence $\{b_i\}$ defined by

$$\begin{split} b_{N+2} &= b_{N+1} = 0, \quad b_j = c_j + u_j b_{j+1} + v_{j+1} b_{j+2}, \qquad j = N, \, N-1, \, \dots, \, 0 \\ 1. \text{ For } k(x) &= \exp(i\tau x), \\ u_j &= i(2j+1)/\tau, \quad v_j = 1 \quad \text{and} \quad S = 2(b_0 \sin \tau - ib_1 \cos \tau)/\tau. \\ 2. \text{ For } k(x) &= \log |x - \tau|, \, -1 < \tau < 1, \\ u_j &= (2j+1)\tau/(j+2), \quad v_j = -(j-1)/(j+2) \quad \text{and} \\ S &= (b_0 - b_1/2)(1 + \tau)\log(1 + \tau) + (b_0 + b_1/2)(1 - \tau)\log(1 - \tau) \\ &+ 2b_2/3 - 2b_0. \\ 3. \text{ For } k(x) &= |x - \tau|^{\alpha}, \, \alpha > -1, \, -1 < \tau < 1, \\ u_j &= (2j+1)\tau/(j + \alpha + 2), \quad v_j = -(j - \alpha - 1)/(j + \alpha + 2) \quad \text{and} \\ S &= \left(\frac{b_0}{\alpha + 1} + \frac{b_1}{\alpha + 2}\right)(1 - \tau)^{\alpha + 1} + \left(\frac{b_0}{\alpha + 1} - \frac{b_1}{\alpha + 2}\right)(1 + \tau)^{\alpha + 1}. \end{split}$$

Appendix 2

We give here the backward recurrence relations for evaluating

$$S = \sum_{j=0}^{N} d_{j} M_{j}(k; \lambda)$$

where $M_j(k; \lambda) = I(kp_j; \lambda)$, the p_j satisfy (8) and the $M_j(k; \lambda)$ satisfy (12) with initial conditions

$$M_{-1}(k;\lambda) \equiv 0, \qquad M_0(k;\lambda) = I(k;\lambda).$$

If we choose $d_j = a_{jm}$, then $Q_m^N(f; \lambda) = S$ and if we choose $d_j = p_j(x_{im})$, then $w_{im}^N(\lambda) = w_{im}S$.

We construct the sequence $\{b_j\}$ defined by $b_{N+2} = b_{N+1} = 0$,

$$b_j = (A_j \lambda - \alpha_j) b_{j+1} - \beta_j b_{j+2} + d_j, \qquad j = N, N - 1, \dots, 0.$$

Then

$$S = b_0 I(k; \lambda) + \sum_{j=0}^{N-1} A_j N_j(k).$$

The latter sum can, in turn, be evaluated by backward recurrence as in Appendix 1, or by any other convenient algorithm. As for the evaluation of $I(k; \lambda)$, see [7].

BIBLIOGRAPHY

- 1. G. Criscuolo and G. Mastroianni, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp. 48 (1987), 725-735.
- 2. L. Gatteschi, On some orthogonal polynomial integrals, Math. Comp. 35 (1980), 1291-1298.
- 3. P. Henrici, Applied and computational complex analysis, Vol. 3, Wiley, New York, 1986.
- 4. I. P. Natanson, *Constructive function theory*, Vol. II (transl. by J. R. Schulenberger), Ungar, New York, 1955.
- 5. D. F. Paget, Generalized product integration, Ph.D. Thesis, Univ. of Tasmania, Hobart, 1976.
- 6. R. Piessens, Modified Clenshaw-Curtis integration and applications to numerical computation of integral transforms, in Numerical Integration (P. Keast and G. Fairweather, eds.), Reidel, Dordrecht, 1987, pp. 35–51.
- 7. P. Rabinowitz, Some practical aspects in the numerical evaluation of Cauchy principal value integrals, Internat. J. Comput. Math. 20 (1986), 283–298.
- 8. ____, *The convergence of noninterpolatory product integration rules*, in Numerical Integration (P. Keast and G. Fairweather, eds.), Reidel, Dordrecht, 1987, pp. 1–16.
- 9. P. Rabinowitz and D. S. Lubinsky, Noninterpolatory integration rules for Cauchy principal value integrals, Math. Comp. 53 (1989), 279–295.
- 10. P. Rabinowitz and W. E. Smith, Interpolatory product integration rules for Riemann-integrable functions, J. Austral. Math. Soc. Ser. B 29 (1987), 195-202.

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL