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GENERALIZED NONINTERPOLATORY RULES FOR 
CAUCHY PRINCIPAL VALUE INTEGRALS 

PHILIP RABINOWITZ 

ABSTRACT. Consider the Cauchy principal value integral 

I(kf;A)= fk(x)f( ) dx, -I<i < 1. 

If we approximate f(x) by EZO a pj(x; w) where {pj} is a sequence of 
orthonormal polynomials with respect to an admissible weight function w and 

aj = (f, pj) , then an approximation to I(kf; A) is given by EZo a I(kpj; A). 
If, in turn, we approximate at by aim = 711 Wmf(X m)Pj(Xim) , then we get 

a double sequence of approximations {QN(f; A)} to I(kf; A) . We study the 
convergence of this sequence by relating it to the sequence of approximations 
associated with I(w f; A) which has been investigated previously. 

1. INTRODUCTION 

In a recent paper, Rabinowitz and Lubinsky [9] studied the convergence prop- 
erties of a method proposed by Rabinowitz [7] and Henrici [3] for the numerical 
evaluation of Cauchy principal value (CPV) integrals of the form 

(1) I(wf; ) = w(x) fX dx, < A < I, 

where w E A, the set of all admissible weight functions, i.e., all functions w 
on J = [-1, 1] such that w > 0 and 11wH1j > 0. This method is based on 
approximating I(wf; ;) by 

N 

(2) SN(f; i) = a ajqj(A), 
j=O 

where 

(3) a1 = (f, P), 
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qj (A) = I (wpj; A) and {pj (x; w): j = 0, 1, 2, ... } is the family of orthonor- 

mal polynomials with respect to w. In turn, SN(f; A) is approximated by 
N 

(4) Q$$(f; A) = Eajmqj(A), 
j=O 

where aim = Q,, (fpj) is an approximation to aj based on the numerical inte- 
gration rule 

m 

(5) Qm(g) = E W1Mg(Xim)' 
i=1 

and where we assume that 

(6) lim Q (g)= | w(x)g(x)dx Ifl-+ 00o J 

for all g E C(J) or all g E R(J), the set of all Riemann-integrable functions 
on J. 

Now, this method requires knowledge of the three-term recurrence relation 
for the polynomials pj which is not always available. Furthermore, it is not 
always easy to find squences of integration rules Qm(g) which satisfy (6), es- 
pecially if w is a nonstandard weight or if we do not wish to use Gaussian 
rules but rather rules which concentrate many integration points in subinter- 
vals where f is not well behaved. Finally, the restriction to admissible weight 
functions does not allow us to deal with CPV integrals of the form 

(7) I(kf; A)=j k(x)f(x) dx, -1 <1< 1, 

where k is such that I(kf; A) exists but k need not be nonnegative. Since 
the main idea in writing the numerator of the integrand in (7) as the product 
of two functions, k and f, is to incorporate the singular or difficult part of 
the numerator into k and treat it analytically while treating the smooth factor 
f numerically, it would make no sense to rewrite (7) as I(wF; A) with F = 

w kf unless w had the same singularity structure as k, and even then we 
would usually have the problems mentioned above. 

In this paper, we shall try to overcome these shortcomings in [9] by using 
ideas of noninterpolatory product integration [8] combined with a device found 
in [1] for expressing CPV integrals with respect to one function, say k, in 
terms of CPV integrals with respect to a second function, say w, positive in 
(-1, 1). The point is that we can then choose a convenient weight function 
w for expressing our inner products and for evaluating the approximations to 

2 i2 these inner products, for example w(x) 1 or w(x) = (1 - x )1/2 
. In fact, 

this latter weight function is particularly useful, as we shall see. We shall first 
describe the method in ?2 and then study some convergence questions in ?3. 

2. A GENERALIZED NONINTERPOLATORY RULE 

Consider the CPV integral I(kf; A) given by (7) where k E DT(N3(2)) n 

LI (J) and f E DT(N,,(A)) n R(J), which ensures that I(kf; A) exists. Here 

ND6(i) = [A - 6t A+ 6] C (- 1, 1) 
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and, for any interval I of length 1(1), 

DT(I) = {: f wI(g; t)t1 dt < o}, 

where the modulus of continuity of g on I is given by 

W1 (g; t) sup <g(X1) -g(X2)1X 
xl -x2l?t 

xi XEI 

Assume now that we have a convenient weight function w E DT(N5 (A)) n A 
such that w (A) > 0. We then have a three-term recurrence relation for the 
sequence of orthonormal polynomials {pj1(x; w)} of the form 

(8) pI = O, po = 1, pj+I(x) = (Ajx - aj)pj(x) - /l3jpj_I(x), j > 0. 

If we expand f in an orthogonal series in terms of the pj(x; w), which for 
the moment, we assume converges uniformly in J, 

00 

(9) f(x) = ZajPj(x; w), 
J=O 

then we can approximate f(x) by EN a p1(x; w) and I(kf; A) by 

N 

(1 0) SN(f ;A) E ajA~(k; A), 
J=O 

where M1(k; A) = I(kpj; A). In turn, we then approximate SN(f; A) by 

N 

(ll)~~~~~ N,(f; A) = ajnM.(k; A). 
j=O 

The M1 (k; A) satisfy the following nonhomogeneous recurrence relation 

(12) Mi+1(k; A) = (A1A - cx)M.(k; A) - /jMJ_ (k; A) + AjNJ(k), 
where 

NJ(k) k(x)p1(x; w) dx. 

Relation (12) follows by replacing pj+I in I(kpj +I; A) by the right-hand side 
of (8) and using the well-known device 

fI kX)PJ() 1) (X - A; I P- 
k k(x) x dx= k(x) dx + A k(x) ' dx. 

Hence, if we know the N1 (k), we can evaluate (11) in a stable manner by 
backward recurrence. 

If w(x) = (1 - X2)112, so that (except for normalization) p1 = T1, the 
Chebyshev polynomial of the first kind, then recurrrence relations for NJ (k) are 
known for a wide variety of functions [6]. For w (x) = 1 , for which pj = F1, the 
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Legendre polynomial, recurrence relations for N1(k) for k(x) = elTX, Ix -Tl' 

and log Ix - T are given by Paget [5], and for a variety of functions by Gatteschi 
[2]. Since the work of Paget is not readily available, we give his recurrence 
relations in Appendix 1. In Appendix 2, we give the recurrence relations for 
evaluating QmN(f; A) when the N1(k) are known, as well as for evaluating the 

weights wlim(A) in the Lagrangian formulation of Q. (f; A), namely 
m 

(13) Q$(fA; A) = W (i)i (Xim) 
Q=1 

with 
N 

(14) wiNM(i) = Wim pj(xim)MJ (k; )A). 
j=O 

3. CONVERGENCE RESULTS 

We study first the convergence of SN(f; A) to I(kf; A), for then we can 
proceed as in [9] to study the convergence of QmN(f; A) to I(kf; A), either 
as an iterated limit or as a double limit. Since we have results in [9] for the 
convergence of SN(f; A) to I(wf; A)), we shall try to reduce the study of the 
convergence of SN(f; A) to that of the convergence of SN(f; A) . To this end, 
we use a device in [1] to relate a CPV integral weighted by k to one weighted 
by w. This is done by writing 

I(kf; A) = [ k(x) f(x) dx = [ w(x) k(x) f(x) dx 

f Ik x)kA I-i(w)xfx-X 
1 (x [k(x) k(/)1 dx +k(f w(x) f(X) dx 

1 x-). [w~x) w(A.)J (A). 
= | f(x)k[x, A] dx - ( f(x)w[x, A] dx + ()I(wf; A). 

Here, we have used the divided difference notation, 

h[x, y] = h(x) - h(y) 

Consequently, if we have conditions on f and w which ensure convergence 
of SN(f; A) to I(wf; A)), we need only find the additional conditions on , 
k and w to insure the convergence of 

Nl 

S,, _ a, a, | pj(x)w[x, A] dx to f (x)w[x, A] dx II 

and 
NI 

E2 Eaf pj(x)k[x, A] dx to ff(x)k[x A] dx - ,2 
I= 
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for then 

SN(f; A) =Ea aj (k; A) = ~)E aj q (A) _ - 
) 

j=O = 

(A) I(wf; A) - k(A) Il + 12 = I(kf; A). 

Clearly, sufficient conditions for the convergence of E1 and Z2 are that 
(9) holds uniformly in J and that w and k E DT(J), for then 

(15) II - ZE I < 21HrN1Kf toJ(W; t)t1 dt, 

where rN(x) = EZ=N+l ajpJ(x; w), and similarly for II2 - 2 1 Hence, pro- 
vided Ik(A)I < 0 and w((A) > 0, we have convergence of SN(f; A) whenever 

SN (f ; A) converges. Furthermore, if SN (f; A) converges uniformly with re- 
spect to A on some closed subset A of (- 1, 1) and w (A) > 0 and Ik((A) < 00 
on A, then we will have uniform convergence of SN(f; A) on A. However, 
we can weaken these conditions in various directions. Thus, it is not necessary 
that w and k E DT(J), only that w, k E DT(N()(A)) nLI(J). For then, we 
can replace (15) by 

1 -E1 l=| rN(X)W[X iA] dx 
(16) 

? JjrN1o / lw[x, A] dx + f lw[x, A]dx] 
[J Nz (1) JN 1 

where both integrals are finite, and similarly for Z2. The first integral in (16) 

is finite since 

f w[x, A] dx = f Iw(x)-w()) dx 
JNJ () -I X-A 

I w(t+1i)-w(1i) dt < 2 ON()(w; t)t dt 

while, for the second integral, we have 

& N I) w[x, ]l dx= w(x)- w() dx 
J-N6(A) J-N,5() X A 

< 5- f lw(x) - w(A)l dx 

< 6-1[jjwj I + 2w(A)] < xo. 

Another possibility is to require only that (9) holds uniformly in N5 (A) . Then, 

if both w lE LI (J) and k 21w E L1 (J), a well-known condition in product 

integration theory [10], we have convergence of SN (f; A) . We summarize these 

remarks in a theorem and several corollaries. 
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Theorem 1. Assume that for some A E (-1, 1), 

(17) f rN(x)W[x, IA]jdx - 0, f rN(x)k[x, A]]dx --0 as N 0, 

that w(A) > 0 and that Ik((A) < oo . Then 

(18) SN(f; A) I(kf; A) 

if and only if 

(19) 'SN(f ; A) I(Wf ; A). 

Let A be a closed subset of (- 1, 1) and assume that (17) holds uniformly in 
A, and that w(A) > 0 and Ik(A)I < oo for all A E A; then (18) holds uniformly 
in A if and only if (19) holds uniformly in A. 

Corollary 1. Iffor some A E (- 1 , 1), sup1 I qj (A) I < oo, supj IIPJ(*; w) I o < 00, 

w(A) > 0, w, k EDT(N()(A)) nL(J), f E Ll,,,(J) and f[x, A] E Ll .I(J), 
then (18) holds. 
Proof. By Theorem 2 in [9], the hypotheses of the corollary suffice for (19) to 
hold. By Theorem 4 in [4, p. 70], IjrNIK1 -- 0. Hence, as in (16), 

I/rN(X)WIX A]ddx 

' 11rN110 [J w[x, A]l dx + t lw[x, A]l dx] O. Na(A) J-N, (A') 

and similarly for El rN(x)k[x, A] dx. Furthermore, since k E DT(N(A)), 
one has Ik(A)I < oo. Hence, by Theorem 1, (18) holds. o 

Before stating the next corollary, we recall the definition of a generalized 
smooth Jacobi (GSJ) weight function [1]. We say that w E GSJ if 

p+1 

(20) W(X)=v(X)17JIx-tJ1j, YJ>-l j=0,...,p+l, 
J=0 

where -l = to < tI < < t p < tp+ = 1, p > 0 and V > 0, ,v E 

DT(J). Corresponding to such a w, we define the set D = J - T, where 
- t o ti I .. * t P+ 1 

Corollary 2. Assume that f ? DT(J), w E GSJ and k E DT(A) n L I(J), 
where A is any compact subset of D. If (9) holds uniformly in J, then (18) 
holds uniformly in A. 
Proof. By Theorem 3 in [9], (19) holds uniformly in A. o 

Corollary 3. Assume that f ? DT(J) and w(x) = (1 - x2)112, or that f E 

H,12+,(J) and w(x) 1, where H (J) = {g: woj(g; t) < At', 0 < ,u ?1, 
A > 0}. If k ? DT(A) n LI(J), where A is any compact subset of (-1, 1), 
then (18) holds uniformly in A. 
Proof. Under the above hypotheses, (9) holds uniformly in J. o 
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Corollary 4. Assume that f E DT(J), w E GSJ, w 1 E L1(J), k 2w E 

LI(J) and k E DT(A) nLI(J) for every compact subset A of D. Then (18) 
holds uniformly in any compact subset of A of D. 

Proof. Let h be the distance of A from T. Then we can find a compact set 
A such that A c A c D and the distance of A from J - A is h/2. Since 
by Theorem 3 in [9], (19) holds uniformly in A, we must show (16). Now, by 
Theorem 2 in [4, p. 95] and by the properties of Pn(x; w), we have rN(x) -+ 0 
uniformly in A. Since w E DT(A), 

frN(x)w[x,) I]dx < JjrN11A |w[x, A]l dx , 0. 

Furthermore, 

jrN(x)w[x IA] dx 

(21) 21/2 2 [ 1/2 

(21) ~~< (Jw (x) rN(x) dx) (| (X) [ dx) 

Since f cz ,l,, the first integral in the right-hand side tends to 0. As for the 
second integral, we have that 

/ (w(x) -( w(A)2) dx < -2 f(w(x) - 2w((A) + w(A)w(x) dx < . 
Aw (x)(x _ A)2 hP I- 

Similarly, since k E DT(A), one has fA rN(x)k[x, A] dx -- 0. 
As for fJA rN(x)k[x, IA] dx, we use an inequality analogous to (21) and the 

fact that 

f k2[x )Id A 4 f k 2(x) - 2k(x)k(A) + k(A) dx 

JA w(x) - hw2 J (x) 

since kw-' = (kw 1/2)w 1/2 E LI(J) by the Cauchy-Schwarz inequality. El 

As particular cases of Corollary 4, we note that if w(x) = (1 - X2)-1/2 

we only require of k that Ik(x)I < C(1 - x2)-314+ , while if w(x) 1_ we 
require that Ik(x)l < C(1 - X2)y1/2+? . As in Corollary 3, this again shows the 
superiority of the Chebyshev weight. 

Once we have shown that (18) holds, we can proceed to the study of the 
convergence of QN(f; A)). We shall state here three theorems corresponding to 
Theorems 6-8 in [9]. We do not give any proofs, since they are almost identical 
to the proofs in [9]. 

Theorem 2. Assume that f E R(J), that I(kf; A) exists and that w E A, 
k E LI(J) and A) E (-1, 1) are such that (18) holds. Let {Qm(g)} be a 
sequence of integration rules such that (6) holds for all g E R(J) . Then 

(22) lim lim QN(f; A) = I(kf; A). 
N-V~ m-o 
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Theorem 3. Suppose that for m = 1, 2, . the rule Qm (g) has precision 7rm > 

Nm, that umn min(Nm, 7rm - Nm) -- xo as m -- 00 and that 

m 

S |wlm7(i|< Clogjtm, m =1,2 ,... 
i=l 

Assume that f E C(J) satisfies the Dini-Lipschitz condition 

limoij(f; t)logt = 0, 
t-*0 

that I(kf; A) exists, that MO(k; A) isfinite and that IkI is bounded in N,(1) 
for some 5 > 0. Then 

(23) lim Qmn'(f; A)=I(kf; A). 
M- 00 

Theorem 4. Assume that (6) holds for all g E R(J), that I(kf; A) exists and 
that (18) holds. Then, given a sequence {(m, Nm)} of pairs of positive integers 
with Nm -' oc as m -- 00, we have that (23) holds if and only if for every 
e > 0, we can find a positive integer I such that for all m sufficiently large, 

EQm(fpj)Mj(k;)) <A) 
j=1 

APPENDIX 1 

In this appendix we give the backward recurrence formulae of Paget [5] for 
the evaluation of S = ENZ o cjNj(k) for the case w(x) 1 , i.e., 

N1(k) = k(x)P (x) dx, 

and for three classes of functions k. In each case we construct the sequence 
{bj} defined by 

bN+2 =bN+l = , bj = cJ + ujbj+I + vj+Ibj+2, j = NN-1, .. ., 0. 

1. For k(x) =exp(irx), 

u = i(2j+ 1)/r, v1 =1 and S= 2(b0 sinr- ibi cos-)/-. 

2. For k(x) - log Ix - <j, -1 < r < 1, 

u = (21+ 1)-/(j + 2), v, =-(j - 1)/(j + 2) and 

S = (bo - b1/2)(1 + r)log(1 + r) + (bo + b1/2)(1 - r)log(1 - r) 
+ 2b2/3 - 2bo. 

3. For k(x) = Ix - -r'K, a > -1, -1 < r < 1, 

u= (2j+ 1)T/(j+a+2), vj = -(j-c- 1)/(j+cx+2) and 

(bo b_ I bo b I r) 
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APPENDIX 2 

We give here the backward recurrence relations for evaluating 
N 

S = E d1M1(k; A) 
j=O 

where Mj(k; A) = I(kp1; A), the pJ satisfy (8) and the M1(k; A) satisfy (12) 
with initial conditions 

MA I (k; A) -= O. MO(k; A) = I(k; A). 

If we choose dj = ajm, then QN(f; A) = S and if we choose dj = Pj(xim), 
then w> (A)= w S. 

We construct the sequence {bj} defined by bN+2 = bN+l = 0, 

b. = (Ai-A - Nj)bj+NI - - .jbj+2 + dj N. N - 1 . 

Then 
N-1 

S= bOI(k; A) + Z AjNj(k). 
j=O 

The latter sum can, in turn, be evaluated by backward recurrence as in Appendix 
1, or by any other convenient algorithm. As for the evaluation of I(k; A), see 
[7]. 
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