GENERALIZED NONINTERPOLATORY RULES FOR CAUCHY PRINCIPAL VALUE INTEGRALS

PHILIP RABINOWITZ

Abstract. Consider the Cauchy principal value integral

$$
I(k f ; \lambda)=f_{-1}^{1} k(x) \frac{f(x)}{x-\lambda} d x, \quad-1<\lambda<1
$$

If we approximate $f(x)$ by $\sum_{J=0}^{N} a_{j} p_{J}(x ; w)$ where $\left\{p_{J}\right\}$ is a sequence of orthonormal polynomials with respect to an admissible weight function w and $a_{J}=\left(f, p_{J}\right)$, then an approximation to $I(k f ; \lambda)$ is given by $\sum_{J=0}^{N} a_{J} I\left(k p_{j} ; \lambda\right)$. If, in turn, we approximate a_{J} by $a_{J m}=\sum_{l=1}^{m} w_{l m} f\left(x_{l m}\right) p_{J}\left(x_{l m}\right)$, then we get a double sequence of approximations $\left\{Q_{m}^{N}(f ; \lambda)\right\}$ to $I(k f ; \lambda)$. We study the convergence of this sequence by relating it to the sequence of approximations associated with $I(w f ; \lambda)$ which has been investigated previously.

1. Introduction

In a recent paper, Rabinowitz and Lubinsky [9] studied the convergence properties of a method proposed by Rabinowitz [7] and Henrici [3] for the numerical evaluation of Cauchy principal value (CPV) integrals of the form

$$
\begin{equation*}
I(w f ; \lambda)=f_{-1}^{1} w(x) \frac{f(x)}{x-\lambda} d x, \quad-1<\lambda<1 \tag{1}
\end{equation*}
$$

where $w \in A$, the set of all admissible weight functions, i.e., all functions w on $J=[-1,1]$ such that $w \geq 0$ and $\|w\|_{1}>0$. This method is based on approximating $I(w f ; \lambda)$ by

$$
\begin{equation*}
\hat{S}_{N}(f ; \lambda)=\sum_{j=0}^{N} a_{j} q_{j}(\lambda), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{J}=\left(f, p_{J}\right) \tag{3}
\end{equation*}
$$

Received July 18, 1988; revised January 5, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 65D30; Secondary 65D32, 41A55.

Key words and phrases. Cauchy principal value integrals, numerical integration, noninterpolatory integration rules, orthogonal polynomials.
$q_{j}(\lambda)=I\left(w p_{j} ; \lambda\right)$ and $\left\{p_{j}(x ; w): j=0,1,2, \ldots\right\}$ is the family of orthonormal polynomials with respect to w. In turn, $\hat{S}_{N}(f ; \lambda)$ is approximated by

$$
\begin{equation*}
\hat{Q}_{m}^{N}(f ; \lambda)=\sum_{j=0}^{N} a_{j m} q_{j}(\lambda) \tag{4}
\end{equation*}
$$

where $a_{j m}=Q_{m}\left(f p_{j}\right)$ is an approximation to a, based on the numerical integration rule

$$
\begin{equation*}
Q_{m}(g)=\sum_{l=1}^{m} w_{l m} g\left(x_{i m}\right), \tag{5}
\end{equation*}
$$

and where we assume that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} Q_{m}(g)=\int_{-1}^{1} w(x) g(x) d x \tag{6}
\end{equation*}
$$

for all $g \in C(J)$ or all $g \in R(J)$, the set of all Riemann-integrable functions on J.

Now, this method requires knowledge of the three-term recurrence relation for the polynomials p_{j} which is not always available. Furthermore, it is not always easy to find squences of integration rules $Q_{m}(g)$ which satisfy (6), especially if w is a nonstandard weight or if we do not wish to use Gaussian rules but rather rules which concentrate many integration points in subintervals where f is not well behaved. Finally, the restriction to admissible weight functions does not allow us to deal with CPV integrals of the form

$$
\begin{equation*}
I(k f ; \lambda)=f_{-1}^{1} k(x) \frac{f(x)}{x-\lambda} d x, \quad-1<\lambda<1 \tag{7}
\end{equation*}
$$

where k is such that $I(k f ; \lambda)$ exists but k need not be nonnegative. Since the main idea in writing the numerator of the integrand in (7) as the product of two functions, k and f, is to incorporate the singular or difficult part of the numerator into k and treat it analytically while treating the smooth factor f numerically, it would make no sense to rewrite (7) as $I(w F ; \lambda)$ with $F=$ $w^{-1} k f$ unless w had the same singularity structure as k, and even then we would usually have the problems mentioned above.

In this paper, we shall try to overcome these shortcomings in [9] by using ideas of noninterpolatory product integration [8] combined with a device found in [1] for expressing CPV integrals with respect to one function, say k, in terms of CPV integrals with respect to a second function, say w, positive in $(-1,1)$. The point is that we can then choose a convenient weight function w for expressing our inner products and for evaluating the approximations to these inner products, for example $w(x) \equiv 1$ or $w(x)=\left(1-x^{2}\right)^{-1 / 2}$. In fact, this latter weight function is particularly useful, as we shall see. We shall first describe the method in $\S 2$ and then study some convergence questions in $\S 3$.

2. A generalized noninterpolatory rule

Consider the CPV integral $I(k f ; \lambda)$ given by (7) where $k \in D T\left(N_{\delta}(\lambda)\right) \cap$ $L_{1}(J)$ and $f \in D T\left(N_{\delta}(\lambda)\right) \cap R(J)$, which ensures that $I(k f ; \lambda)$ exists. Here

$$
N_{\delta}(\lambda)=[\lambda-\delta, \lambda+\delta] \subset(-1,1)
$$

and, for any interval I of length $l(I)$,

$$
D T(I)=\left\{g: \int_{0}^{l(I)} \omega_{I}(g ; t) t^{-1} d t<\infty\right\}
$$

where the modulus of continuity of g on I is given by

$$
\omega_{I}(g ; t)=\sup _{\substack{\left|x_{1}-x_{2}\right| \leq t \\ x_{1}, x_{2} \in I}}\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right| .
$$

Assume now that we have a convenient weight function $w \in D T\left(N_{\delta}(\lambda)\right) \cap A$ such that $w(\lambda)>0$. We then have a three-term recurrence relation for the sequence of orthonormal polynomials $\left\{p_{j}(x ; w)\right\}$ of the form
(8) $p_{-1}=0, \quad p_{0}=1, \quad p_{j+1}(x)=\left(A_{j} x-\alpha_{j}\right) p_{j}(x)-\beta_{j} p_{j-1}(x), \quad j \geq 0$.

If we expand f in an orthogonal series in terms of the $p_{j}(x ; w)$, which for the moment, we assume converges uniformly in J,

$$
\begin{equation*}
f(x)=\sum_{j=0}^{\infty} a_{j} p_{j}(x ; w) \tag{9}
\end{equation*}
$$

then we can approximate $f(x)$ by $\sum_{J=0}^{N} a_{j} p_{j}(x ; w)$ and $I(k f ; \lambda)$ by

$$
\begin{equation*}
S_{N}(f ; \lambda)=\sum_{j=0}^{N} a_{j} M_{j}(k ; \lambda), \tag{10}
\end{equation*}
$$

where $M_{j}(k ; \lambda)=I\left(k p_{j} ; \lambda\right)$. In turn, we then approximate $S_{N}(f ; \lambda)$ by

$$
\begin{equation*}
Q_{m}^{N}(f ; \lambda)=\sum_{j=0}^{N} a_{j m} M_{j}(k ; \lambda) \tag{11}
\end{equation*}
$$

The $M_{j}(k ; \lambda)$ satisfy the following nonhomogeneous recurrence relation

$$
\begin{equation*}
M_{j+1}(k ; \lambda)=\left(A_{j} \lambda-\alpha_{j}\right) M_{j}(k ; \lambda)-\beta_{j} M_{J-1}(k ; \lambda)+A_{j} N_{J}(k) \tag{12}
\end{equation*}
$$

where

$$
N_{\jmath}(k)=\int_{-1}^{1} k(x) p_{\jmath}(x ; w) d x
$$

Relation (12) follows by replacing p_{j+1} in $I\left(k p_{j+1} ; \lambda\right)$ by the right-hand side of (8) and using the well-known device

$$
f_{-1}^{1} k(x) \frac{x p_{j}(x)}{x-\lambda} d x=\int_{-1}^{1} k(x) \frac{(x-\lambda) p_{j}(x)}{x-\lambda} d x+\lambda f_{-1}^{1} k(x) \frac{p_{j}(x)}{x-\lambda} d x
$$

Hence, if we know the $N_{J}(k)$, we can evaluate (11) in a stable manner by backward recurrence.

If $w(x)=\left(1-x^{2}\right)^{-1 / 2}$, so that (except for normalization) $p_{J}=T_{J}$, the Chebyshev polynomial of the first kind, then recurrrence relations for $N_{J}(k)$ are known for a wide variety of functions [6]. For $w(x) \equiv 1$, for which $p_{J}=P_{J}$, the

Legendre polynomial, recurrence relations for $N_{j}(k)$ for $k(x)=e^{i \tau x},|x-\tau|^{\alpha}$ and $\log |x-\tau|$ are given by Paget [5], and for a variety of functions by Gatteschi [2]. Since the work of Paget is not readily available, we give his recurrence relations in Appendix 1. In Appendix 2, we give the recurrence relations for evaluating $Q_{m}^{N}(f ; \lambda)$ when the $N_{j}(k)$ are known, as well as for evaluating the weights $w_{i m}^{N}(\lambda)$ in the Lagrangian formulation of $Q_{m}^{N}(f ; \lambda)$, namely

$$
\begin{equation*}
Q_{m}^{N}(f ; \lambda)=\sum_{i=1}^{m} w_{i m}^{N}(\lambda) f\left(x_{i m}\right) \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
w_{i m}^{N}(\lambda)=w_{i m} \sum_{j=0}^{N} p_{j}\left(x_{i m}\right) M_{j}(k ; \lambda) . \tag{14}
\end{equation*}
$$

3. Convergence results

We study first the convergence of $S_{N}(f ; \lambda)$ to $I(k f ; \lambda)$, for then we can proceed as in [9] to study the convergence of $Q_{m}^{N}(f ; \lambda)$ to $I(k f ; \lambda)$, either as an iterated limit or as a double limit. Since we have results in [9] for the convergence of $\hat{S}_{N}(f ; \lambda)$ to $I(w f ; \lambda)$, we shall try to reduce the study of the convergence of $S_{N}(f ; \lambda)$ to that of the convergence of $\hat{S}_{N}(f ; \lambda)$. To this end, we use a device in [1] to relate a CPV integral weighted by k to one weighted by w. This is done by writing

$$
\begin{aligned}
I(k f ; \lambda) & =f_{-1}^{1} k(x) \frac{f(x)}{x-\lambda} d x=f_{-1}^{1} w(x) \frac{k(x)}{w(x)} \frac{f(x)}{x-\lambda} d x \\
& =\int_{-1}^{1} w(x) \frac{f(x)}{x-\lambda}\left[\frac{k(x)}{w(x)}-\frac{k(\lambda)}{w(\lambda)}\right] d x+\frac{k(\lambda)}{w(\lambda)} f_{-1}^{1} w(x) \frac{f(x)}{x-\lambda} d x \\
& =\int_{-1}^{1} f(x) k[x, \lambda] d x-\frac{k(\lambda)}{w(\lambda)} \int_{-1}^{1} f(x) w[x, \lambda] d x+\frac{k(\lambda)}{w(\lambda)} I(w f ; \lambda) .
\end{aligned}
$$

Here, we have used the divided difference notation,

$$
h[x, y]=\frac{h(x)-h(y)}{x-y}
$$

Consequently, if we have conditions on f and w which ensure convergence of $\hat{S}_{N}(f ; \lambda)$ to $I(w f ; \lambda)$, we need only find the additional conditions on f, k and w to insure the convergence of

$$
\sum_{1} \equiv \sum_{J=0}^{N} a_{j} \int_{-1}^{1} p_{j}(x) w[x, \lambda] d x \text { to } \int_{-1}^{1} f(x) w[x, \lambda] d x \equiv I_{1}
$$

and

$$
\sum_{2} \equiv \sum_{j=0}^{N} a_{j} \int_{-1}^{1} p_{j}(x) k[x, \lambda] d x \text { to } \int_{-1}^{1} f(x) k[x, \lambda] d x \equiv I_{2}
$$

for then

$$
\begin{aligned}
S_{N}(f ; \lambda) & =\sum_{j=0}^{N} a_{j} M_{j}(k ; \lambda)=\frac{k(\lambda)}{w(\lambda)} \sum_{j=0}^{N} a_{j} q_{j}(\lambda)-\frac{k(\lambda)}{w(\lambda)} \sum_{1}+\sum_{2} \\
& \rightarrow \frac{k(\lambda)}{w(\lambda)} I(w f ; \lambda)-\frac{k(\lambda)}{w(\lambda)} I_{1}+I_{2}=I(k f ; \lambda)
\end{aligned}
$$

Clearly, sufficient conditions for the convergence of \sum_{1} and \sum_{2} are that (9) holds uniformly in J and that w and $k \in D T(J)$, for then

$$
\begin{equation*}
\left|I_{1}-\sum_{1}\right| \leq 2\left\|r_{N}\right\|_{\infty} \int_{0}^{2} \omega_{J}(w ; t) t^{-1} d t \tag{15}
\end{equation*}
$$

where $r_{N}(x)=\sum_{j=N+1}^{\infty} a_{j} p_{j}(x ; w)$, and similarly for $\left|I_{2}-\sum_{2}\right|$. Hence, provided $|k(\lambda)|<\infty$ and $w(\lambda)>0$, we have convergence of $S_{N}(f ; \lambda)$ whenever $\hat{S}_{N}(f ; \lambda)$ converges. Furthermore, if $\hat{S}_{N}(f ; \lambda)$ converges uniformly with respect to λ on some closed subset Δ of $(-1,1)$ and $w(\lambda)>0$ and $|k(\lambda)|<\infty$ on Δ, then we will have uniform convergence of $S_{N}(f ; \lambda)$ on Δ. However, we can weaken these conditions in various directions. Thus, it is not necessary that w and $k \in D T(J)$, only that $w, k \in D T\left(N_{\delta}(\lambda)\right) \cap L_{1}(J)$. For then, we can replace (15) by

$$
\begin{align*}
\left|I_{1}-\sum_{1}\right| & =\left|\int_{-1}^{1} r_{N}(x) w[x, \lambda] d x\right| \tag{16}\\
& \leq\left\|r_{N}\right\|_{\infty}\left[\int_{N_{\delta}(\lambda)}|w[x, \lambda]| d x+\int_{J-N_{\delta}(\lambda)}|w[x, \lambda]| d x\right]
\end{align*}
$$

where both integrals are finite, and similarly for \sum_{2}. The first integral in (16) is finite since

$$
\begin{aligned}
& \int_{N_{\delta}(\lambda)}|w[x, \lambda]| d x=\int_{\lambda-\delta}^{\lambda+\delta}\left|\frac{w(x)-w(\lambda)}{x-\lambda}\right| d x \\
& \quad=\int_{-\delta}^{\delta}\left|\frac{w(t+\lambda)-w(\lambda)}{t}\right| d t \leq 2 \int_{0}^{\delta} \omega_{N_{\delta}(\lambda)}(w ; t) t^{-1} d t
\end{aligned}
$$

while, for the second integral, we have

$$
\begin{aligned}
\int_{J-N_{\delta}(\lambda)}|w[x, \lambda]| d x & =\int_{J-N_{\delta}(\lambda)}\left|\frac{w(x)-w(\lambda)}{x-\lambda}\right| d x \\
& \leq \delta^{-1} \int_{J-N_{\delta}(\lambda)}|w(x)-w(\lambda)| d x \\
& <\delta^{-1}\left[\|w\|_{1}+2 w(\lambda)\right]<\infty
\end{aligned}
$$

Another possibility is to require only that (9) holds uniformly in $N_{\delta}(\lambda)$. Then, if both $w^{-1} \in L_{1}(J)$ and $k^{2} / w \in L_{1}(J)$, a well-known condition in product integration theory [10], we have convergence of $S_{N}(f ; \lambda)$. We summarize these remarks in a theorem and several corollaries.

Theorem 1. Assume that for some $\lambda \in(-1,1)$,

$$
\begin{equation*}
\int_{-1}^{1} r_{N}(x) w[x, \lambda] d x \rightarrow 0, \quad \int_{-1}^{1} r_{N}(x) k[x, \lambda] d x \rightarrow 0 \quad \text { as } N \rightarrow \infty \tag{17}
\end{equation*}
$$

that $w(\lambda)>0$ and that $|k(\lambda)|<\infty$. Then

$$
\begin{equation*}
S_{N}(f ; \lambda) \rightarrow I(k f ; \lambda) \tag{18}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\hat{S}_{N}(f ; \lambda) \rightarrow I(w f ; \lambda) \tag{19}
\end{equation*}
$$

Let Δ be a closed subset of $(-1,1)$ and assume that (17) holds uniformly in Δ, and that $w(\lambda)>0$ and $|k(\lambda)|<\infty$ for all $\lambda \in \Delta$; then (18) holds uniformly in Δ if and only if (19) holds uniformly in Δ.
Corollary 1. If for some $\lambda \in(-1,1), \sup _{j}\left|q_{j}(\lambda)\right|<\infty, \sup _{j}\left\|p_{j}(\cdot ; w)\right\|_{\infty}<\infty$, $w(\lambda)>0, w, k \in D T\left(N_{\delta}(\lambda)\right) \cap L_{1}(J), f \in L_{1, w}(J)$ and $f[x, \lambda] \in L_{1, w}(J)$, then (18) holds.
Proof. By Theorem 2 in [9], the hypotheses of the corollary suffice for (19) to hold. By Theorem 4 in [4, p. 70], $\left\|r_{N}\right\|_{\infty} \rightarrow 0$. Hence, as in (16),

$$
\begin{aligned}
& \left|\int_{-1}^{1} r_{N}(x) w[x, \lambda] d x\right| \\
& \quad \leq\left\|r_{N}\right\|_{\infty}\left[\int_{N_{\delta}(\lambda)}|w[x, \lambda]| d x+\int_{J-N_{\delta}(\lambda)}|w[x, \lambda]| d x\right] \rightarrow 0
\end{aligned}
$$

and similarly for $\int_{-1}^{1} r_{N}(x) k[x, \lambda] d x$. Furthermore, since $k \in D T\left(N_{\delta}(\lambda)\right)$, one has $|k(\lambda)|<\infty$. Hence, by Theorem $1,(18)$ holds.

Before stating the next corollary, we recall the definition of a generalized smooth Jacobi (GSJ) weight function [1]. We say that $w \in$ GSJ if

$$
\begin{equation*}
w(x)=\psi(x) \prod_{J=0}^{p+1}\left|x-t_{ر}\right|^{\gamma_{J}}, \quad \gamma_{J}>-1, j=0, \ldots, p+1 \tag{20}
\end{equation*}
$$

where $-1=t_{0}<t_{1}<\cdots<t_{p}<t_{p+1}=1, p \geq 0$ and $\psi>0, \psi \in$ $D T(J)$. Corresponding to such a w, we define the set $D=J-T$, where $T=\left\{t_{0}, t_{1}, \ldots, t_{p+1}\right\}$.
Corollary 2. Assume that $f \in D T(J), w \in G S J$ and $k \in D T(\Delta) \cap L_{1}(J)$, where Δ is any compact subset of D. If (9) holds uniformly in J, then (18) holds uniformly in Δ.
Proof. By Theorem 3 in [9], (19) holds uniformly in Δ.
Corollary 3. Assume that $f \in D T(J)$ and $w(x)=\left(1-x^{2}\right)^{-1 / 2}$, or that $f \in$ $H_{1 / 2+\varepsilon}(J)$ and $w(x) \equiv 1$, where $H_{\mu}(J)=\left\{g: \omega_{J}(g ; t)<A t^{\mu}, 0<\mu \leq 1\right.$, $A>0\}$. If $k \in D T(\Delta) \cap L_{1}(J)$, where Δ is any compact subset of $(-1,1)$, then (18) holds uniformly in Δ.
Proof. Under the above hypotheses, (9) holds uniformly in J.

Corollary 4. Assume that $f \in D T(J), w \in G S J, w^{-1} \in L_{1}(J), k^{2} w^{-1} \in$ $L_{1}(J)$ and $k \in D T(\tilde{\Delta}) \cap L_{1}(J)$ for every compact subset $\tilde{\Delta}$ of D. Then (18) holds uniformly in any compact subset of Δ of D.
Proof. Let h be the distance of Δ from T. Then we can find a compact set $\tilde{\Delta}$ such that $\Delta \subset \tilde{\Delta} \subset D$ and the distance of Δ from $J-\tilde{\Delta}$ is $h / 2$. Since by Theorem 3 in [9], (19) holds uniformly in Δ, we must show (16). Now, by Theorem 2 in $\left[4\right.$, p. 95] and by the properties of $p_{n}(x ; w)$, we have $r_{N}(x) \rightarrow 0$ uniformly in $\tilde{\Delta}$. Since $w \in D T(\tilde{\Delta})$,

$$
\left|\int_{\dot{\Delta}} r_{N}(x) w[x, \lambda] d x\right| \leq\left\|r_{N}\right\|_{\tilde{\Delta}} \int_{\dot{\Delta}}|w[x, \lambda]| d x \rightarrow 0 .
$$

Furthermore,

$$
\begin{align*}
& \left|\int_{J-\dot{\Delta}} r_{N}(x) w[x, \lambda] d x\right| \\
& \quad \leq\left(\int_{J-\dot{\Delta}} w(x) r_{N}^{2}(x) d x\right)^{1 / 2}\left(\int_{J-\dot{\Delta}} \frac{w^{2}[x, \lambda]}{w(x)} d x\right)^{1 / 2} . \tag{21}
\end{align*}
$$

Since $f \in L_{2, w}$, the first integral in the right-hand side tends to 0 . As for the second integral, we have that

$$
\int_{J-\dot{\Delta}} \frac{(w(x)-w(\lambda))^{2}}{w(x)(x-\lambda)^{2}} d x \leq \frac{4}{h^{2}} \int_{-1}^{1}\left(w(x)-2 w(\lambda)+w(\lambda) w(x)^{-1}\right) d x<\infty
$$

Similarly, since $k \in D T(\tilde{\Delta})$, one has $\int_{\tilde{\Delta}} r_{N}(x) k[x, \lambda] d x \rightarrow 0$.
As for $\int_{J-\dot{\Delta}} r_{N}(x) k[x, \lambda] d x$, we use an inequality analogous to (21) and the fact that

$$
\int_{J-\dot{\Delta}} \frac{k^{2}[x, \lambda]}{w(x)} d x \leq \frac{4}{h^{2}} \int_{-1}^{1} \frac{k^{2}(x)-2 k(x) k(\lambda)+k(\lambda) d x}{w(x)}<\infty
$$

since $k w^{-1}=\left(k w^{-1 / 2}\right) w^{-1 / 2} \in L_{1}(J)$ by the Cauchy-Schwarz inequality.
As particular cases of Corollary 4, we note that if $w(x)=\left(1-x^{2}\right)^{-1 / 2}$, we only require of k that $|k(x)| \leq C\left(1-x^{2}\right)^{-3 / 4+\varepsilon}$, while if $w(x) \equiv 1$, we require that $|k(x)| \leq C\left(1-x^{2}\right)^{-1 / 2+\varepsilon}$. As in Corollary 3, this again shows the superiority of the Chebyshev weight.

Once we have shown that (18) holds, we can proceed to the study of the convergence of $Q_{m}^{N}(f ; \lambda)$. We shall state here three theorems corresponding to Theorems 6-8 in [9]. We do not give any proofs, since they are almost identical to the proofs in [9].

Theorem 2. Assume that $f \in R(J)$, that $I(k f ; \lambda)$ exists and that $w \in A$, $k \in L_{1}(J)$ and $\lambda \in(-1,1)$ are such that (18) holds. Let $\left\{Q_{m}(g)\right\}$ be a sequence of integration rules such that (6) holds for all $g \in R(J)$. Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \lim _{m \rightarrow \infty} Q_{m}^{N}(f ; \lambda)=I(k f ; \lambda) \tag{22}
\end{equation*}
$$

Theorem 3. Suppose that for $m=1,2, \ldots$, the rule $Q_{m}(g)$ has precision $\pi_{m}>$ N_{m}, that $\mu_{m} \equiv \min \left(N_{m}, \pi_{m}-N_{m}\right) \rightarrow \infty$ as $m \rightarrow \infty$ and that

$$
\sum_{i=1}^{m}\left|w_{i m}^{N_{m}}(\lambda)\right| \leq C \log \mu_{m}, \quad m=1,2, \ldots
$$

Assume that $f \in C(J)$ satisfies the Dini-Lipschitz condition

$$
\lim _{t \rightarrow 0} \omega_{J}(f ; t) \log t=0
$$

that $I(k f ; \lambda)$ exists, that $M_{0}(k ; \lambda)$ is finite and that $|k|$ is bounded in $N_{\delta}(\lambda)$ for some $\delta>0$. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} Q_{m}^{N_{m}}(f ; \lambda)=I(k f ; \lambda) . \tag{23}
\end{equation*}
$$

Theorem 4. Assume that (6) holds for all $g \in R(J)$, that $I(k f ; \lambda)$ exists and that (18) holds. Then, given a sequence $\left\{\left(m, N_{m}\right)\right\}$ of pairs of positive integers with $N_{m} \rightarrow \infty$ as $m \rightarrow \infty$, we have that (23) holds if and only if for every $\varepsilon>0$, we can find a positive integer l such that for all m sufficiently large,

$$
\left|\sum_{j=l}^{N_{m}} Q_{m}\left(f p_{j}\right) M_{j}(k ; \lambda)\right|<\varepsilon .
$$

Appendix 1

In this appendix we give the backward recurrence formulae of Paget [5] for the evaluation of $S=\sum_{j=0}^{N} c_{j} N_{j}(k)$ for the case $w(x) \equiv 1$, i.e.,

$$
N_{\jmath}(k)=\int_{-1}^{1} k(x) P_{n}(x) d x
$$

and for three classes of functions k. In each case we construct the sequence $\left\{b_{J}\right\}$ defined by

$$
b_{N+2}=b_{N+1}=0, \quad b_{\jmath}=c_{\jmath}+u_{j} b_{\jmath+1}+v_{\jmath+1} b_{j+2}, \quad j=N, N-1, \ldots, 0 .
$$

1. For $k(x)=\exp (i \tau x)$,

$$
u_{j}=i(2 j+1) / \tau, \quad v_{J}=1 \quad \text { and } \quad S=2\left(b_{0} \sin \tau-i b_{1} \cos \tau\right) / \tau
$$

2. For $k(x)=\log |x-\tau|,-1<\tau<1$,

$$
\begin{aligned}
u_{J}= & (2 j+1) \tau /(j+2), \quad v_{J}=-(j-1) /(j+2) \quad \text { and } \\
S= & \left(b_{0}-b_{1} / 2\right)(1+\tau) \log (1+\tau)+\left(b_{0}+b_{1} / 2\right)(1-\tau) \log (1-\tau) \\
& +2 b_{2} / 3-2 b_{0} .
\end{aligned}
$$

3. For $k(x)=|x-\tau|^{\alpha}, \alpha>-1,-1<\tau<1$,

$$
\begin{aligned}
u_{j} & =(2 j+1) \tau /(j+\alpha+2), \quad v_{\jmath}=-(j-\alpha-1) /(j+\alpha+2) \quad \text { and } \\
S & =\left(\frac{b_{0}}{\alpha+1}+\frac{b_{1}}{\alpha+2}\right)(1-\tau)^{\alpha+1}+\left(\frac{b_{0}}{\alpha+1}-\frac{b_{1}}{\alpha+2}\right)(1+\tau)^{\alpha+1}
\end{aligned}
$$

Appendix 2

We give here the backward recurrence relations for evaluating

$$
S=\sum_{j=0}^{N} d_{j} M_{j}(k ; \lambda)
$$

where $M_{j}(k ; \lambda)=I\left(k p_{j} ; \lambda\right)$, the p_{j} satisfy (8) and the $M_{j}(k ; \lambda)$ satisfy (12) with initial conditions

$$
M_{-1}(k ; \lambda) \equiv 0, \quad M_{0}(k ; \lambda)=I(k ; \lambda)
$$

If we choose $d_{j}=a_{j m}$, then $Q_{m}^{N}(f ; \lambda)=S$ and if we choose $d_{j}=p_{j}\left(x_{i m}\right)$, then $w_{i m}^{N}(\lambda)=w_{i m} S$.

We construct the sequence $\left\{b_{j}\right\}$ defined by $b_{N+2}=b_{N+1}=0$,

$$
b_{j}=\left(A_{j} \lambda-\alpha_{j}\right) b_{j+1}-\beta_{j} b_{j+2}+d_{j}, \quad j=N, N-1, \ldots, 0 .
$$

Then

$$
S=b_{0} I(k ; \lambda)+\sum_{j=0}^{N-1} A_{j} N_{j}(k)
$$

The latter sum can, in turn, be evaluated by backward recurrence as in Appendix 1 , or by any other convenient algorithm. As for the evaluation of $I(k ; \lambda)$, see [7].

Bibliography

1. G. Criscuolo and G. Mastroianni, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp. 48 (1987), 725-735.
2. L. Gatteschi, On some orthogonal polynomial integrals, Math. Comp. 35 (1980), 1291-1298.
3. P. Henrici, Applied and computational complex analysis, Vol. 3, Wiley, New York, 1986.
4. I. P. Natanson, Constructive function theory, Vol. II (transl. by J. R. Schulenberger), Ungar, New York, 1955.
5. D. F. Paget, Generalized product integration, Ph.D. Thesis, Univ. of Tasmania, Hobart, 1976.
6. R. Piessens, Modified Clenshaw-Curtis integration and applications to numerical computation of integral transforms, in Numerical Integration (P. Keast and G. Fairweather, eds.), Reidel, Dordrecht, 1987, pp. 35-51.
7. P. Rabinowitz, Some practical aspects in the numerical evaluation of Cauchy principal value integrals, Internat. J. Comput. Math. 20 (1986), 283-298.
8. \quad, The convergence of noninterpolatory product integration rules, in Numerical Integration (P. Keast and G. Fairweather, eds.), Reidel, Dordrecht, 1987, pp. 1-16.
9. P. Rabinowitz and D. S. Lubinsky, Noninterpolatory integration rules for Cauchy principal value integrals, Math. Comp. 53 (1989), 279-295.
10. P. Rabinowitz and W. E. Smith, Interpolatory product integration rules for Riemann-integrable functions, J. Austral. Math. Soc. Ser. B 29 (1987), 195-202.

Department of Applied Matifematics and Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel

